Properties of Fluid

Fluid is a subtance (liquid or gas) which can deform continously under the action of shear stress.

There are 2 types of fluid:

Ideal Fluid: which does not  have surface tension, viscosity and are incompressible.
Real Fluid: Fluids that are not Ideal.

In reality Ideal Fluid does not exist. 

 

$Density,\rho =\frac{mass}{Volume}$

$G=\frac{\rho }{{\rho}_{Standard}}$

$\gamma =\rho g$

$K=-\frac{dP}{{dV}/{V}\;}=\frac{dP}{{d\rho }/{\rho }}$

$\tau =\mu \frac{du}{dy}$

$\upsilon =\frac{\mu }{\rho }$

${{\mu }_{liq}}=a{{10}^{\left( \frac{b}{T-c} \right)}}$

${{\mu }_{gas}}=\frac{a\sqrt{T}}{1+{}^{b}/{}_{T}}$

$\Delta {{P}_{1}}=\frac{2\sigma }{r}$

$\Delta {{P}_{2}}=\frac{4\sigma }{r}$

$\Delta {{P}_{3}}=\frac{2\sigma }{d}$

$h=\frac{4\sigma \cos \theta }{\gamma d}$




$G=$ Spective Gravity or Relative Density of Fluid
${{\rho}_{Standard}}=$ Density of some standard fluid at standard temperature (usually water at $4{}^\circ C$)
$\gamma =$ Specific Weight or weight density of liquid
$g=$ Acceleration due to gravity
$K=$ Bulk Modulus
$dP=$ Increase in Pressure
${{dV}/{V}}=$ Chnage in Volume per unit Volume
$\tau =$ Shear Stress
$\mu =$ Dynamic Viscosity
$\frac{du}{dy}=$ Velocity Gradient
$\upsilon =$ Kinematic Viscosity
${{\mu }_{liq}}=$ Dynamic viscosity of liquid
${{\mu }_{gas}}=$ Dynamic viscosity of gas
$\sigma=$ Surface Tension



NEWTONIAN AND NON NEWTONIAN FLUIDS



General relationship between shear stress and velocity gradient is,

                     $\tau =A{{\left( \frac{du}{dy} \right)}^{n}}+B$


 Types of Fluids  Examples
 Dilatant  Suspended Starch or sand, sugar in water, butter
 Newtonian  Water, air, alcohol
 Pseudo Plastic  Paints, polymer solutions, blood, paper pulp, syrup, milk
 Rheopectic  Gypsum, lubricants
 Bingham Plastic  Tooth Paste, Sewage sludge, drilling mud
 Thixotropic  Printer's Ink, Ketchup, enamels







No comments:

Post a Comment